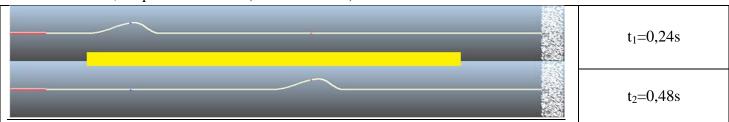

PHYSIQUE Unité :1 PROPAGATION D'UNE ONDE-ONDES PROGRESSIVES

Exercices Les ondes mécaniques progressives

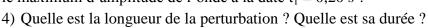
EXERCICE 1

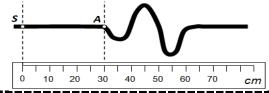

On a réalisé deux prises de vue séparées par une durée Δt de 100ms. Une règle blanche de 100cm de longueur est disposée près du ressort pour donner une échelle des distances.

- 1) Le phénomène présenté constitue une onde. Est-elle transversale ou longitudinale ? Expliquer.
- 2) Quelle est la célérité de l'onde le long du ressort ?

EXERCICE 2

La règle mesure 1 mètre de long. La corde est posée sur un sol lisse. On imprime une secousse brève à l'un de ses extrémités. A l'aide d'un caméscope, on filme la propagation de la perturbation le long de la corde. On obtient à différents instants, l'aspect de la corde (voir ci-dessous).




- 1) Qu'est ce qu'une onde mécanique progressive?
- 2) S'agit-il d'une onde transversale ou longitudinale?
- 3) Sur quelle distance l'onde s'est-elle propagée entre les instants t₁ et t₂? En déduire la célérité de l'onde. Expliquer.

EXERCICE 3

Une perturbation se propage de gauche à droite le long d'une corde avec une célérité $v = 5.0 \text{ m} \cdot \text{s}^{-1}$.

- 1) Cette onde est-elle longitudinale ou transversale? Justifier.
- 2) Déterminer la valeur du retard τ du point A par rapport à la source de l'onde S?
- 3) La photo de la corde ci-contre a été prise à une date choisie comme origine du temps ($t_0=0$). A quelle distance de la source S se trouvera le maximum d'amplitude de l'onde à la date $t_1=0,20~{\rm s}$?

EXERCICE 3

On souhaite représenter le déplacement transversal u au point M et au point M' en fonction du temps t.

Une onde, de courte durée, se propage selon la direction x'x avec une célérité v=2.10³ m.s⁻¹.

Elle provoque une perturbation.

Le graphique ci-contre représente la perturbation u provoquée en un point M d'abscisse $x_1 = 5$ m en fonction du temps.

- 1 Quel est l'instant t_1 qui correspond au début de la perturbation au point M ? Quel est l'instant t_2 qui correspond à la fin de la perturbation ?
- 2 Déterminer à quel instant t_3 le début de la perturbation se trouvera au point M' d'abscisse x'=9m.
- 3- En déduire l'instant t_4 qui correspondra à la fin de la perturbation en M'.
- Perturbatin en
 M x₁=5cm

 Temps t (ms)
- 4- En déduire la représentation graphique, en fonction du temps t, la perturbation u au point M'd'abscisse x'=9m.
- 5- Qualifier les états du point M et du point M' à l'instant $t_5 = 5$ ms.
- 6- Déterminer la longueur de la perturbation.
- 7- En déduire la représentation graphique de la perturbation u, en fonction de x, à l'instant $t_5 = 5$ ms